TRATAMENTO TERMOMECÂNICO NA LIGA Cu-Zn-Al

Adriana Vitório dos Santos, Jorge Kolososki, Francisco Ambrozio Filho Centro Universitário da FEI drica.usp@gmail.com e jorgekol@fei.edu.br

Resumo: Foram retiradas três amostras de uma barra de liga CuZnAl, as quais foram laminadas a frio, aquecidas a 600 °C, 720 °C e 750 °C e resfriadas em água. A seguir estas amostras foram caracterizadas química, metalográfica e mecanicamente (ensaio de dureza). Como resultado observou-se que com o aumento da temperatura do tratamento térmico aumenta a porcentagem da fase β a qual, no resfriamento rápido transforma-se em martensita, refletindo em aumento de dureza e diminuição da trabalhabilidade da liga.

1. Introdução

A expressão liga com memória de forma (LMF) é aplicada a uma família de materiais metálicos que mesmo após serem deformados, demonstram a habilidade de retornar a uma forma previamente definida, desde que submetidos a um processo termomecânico apropriado, ou seja, tem propriedades termo-elásticas. Estas propriedades são originadas da Transformação Martensítica Termoelástica que é caracterizada por uma transformação sem difusão com deformação homogênea da rede cristalina.

Neste trabalho foi estudada uma liga de Cu-Zn-Al que apresenta a propriedade de efeito de memória de forma. Amostras dessa liga foram tratadas termicamente, à temperaturas específicas e resfriadas rapidamente objetivando alterar a microestrutura e consequentemente suas propriedades.

2. Metodologia

Para a realização deste trabalho foram utilizados corpos de provas da liga Cu–Zn–Al. Após análise química, amostras foram laminadas a frio até uma espessura pré-determinada e, a seguir, aquecidas a temperaturas de 600°C, 720°C e 750°C durante uma hora e resfriadas rapidamente em água. Utilizando a infraestrutura do Laboratório de Materiais da FEI amostras foram preparadas metalograficamente. Após medidas de dureza, utilizando a escala Vickers, essas amostras foram analisadas no microscópio óptico Leica e os constituintes quantificados através dos softwares Leica Qwin e Metallurgy.

3. Resultados

O resultado de análise química indicou tratar-se de uma liga constituída por 4,1 %Al, 24,6 %Zn e 71,3 %Cu. A análise metalográfica indicou a presença da fase α proeutética e do constituinte martensita, mostrados na figura 1. Utilizando os recursos citados quantificou-se esses constituintes e o resultado obtido é mostrado na tabela 1 e na figura 1.

Tabela 1. Resultado da análise quantitativa. Porcentagem da fase α obtida após tratamento térmico nas respectivas temperaturas.

600° C	720° C	750° C
53,76 ± 2,60	27,82 ± 1,43	20,49 ± 2,56

Figura 1. Micrografia da liga após resfriamento rápido a partir de $600\,^{\circ}\text{C}$, $720\,^{\circ}\text{C}\,$ e $750\,^{\circ}\text{C}$, respectivamente. Fase α próeutética e martensita.

Como esperado teoricamente, o aumento da temperatura do tratamento térmico provocou aumento da quantidade de fase β . Esta fase, num processo de resfriamento rápido sofre transformação martensita. A estrutura martensítica, quando comparada com a fase α , apresenta maior dureza, o que refletiu em aumento de dureza do material tratado em temperaturas crescentes.

Tabela 2: Dureza após tratamento térmico nas temperaturas indicadas (HV 0,5)

	600° C	720° C	750° C
1º Trat. Térmico	$122,0 \pm 1,33$	$136,3 \pm 3,86$	$158,6 \pm 7,59$
1º Trat. Térmico e			
laminado	$237,0 \pm 3,74$	$233,0 \pm 3,56$	$242,3 \pm 6,94$
2º Trat. Térmico	$109,3 \pm 5,44$	$115,6 \pm 2,05$	$139,6 \pm 8,26$
2º Trat. Térmico e			
laminado	224,6 + 0,94	226,3 + 8,18	243,3 + 5,79
3º Trat. Térmico	$121,3 \pm 3,68$	$123,3 \pm 4,99$	$142,3 \pm 6,60$

Nota-se o grande aumento de dureza após laminação devido ao encruamento dos grãos, que proporcionou o aumento da resistência mecânica do material.

4. Conclusões

- Com base nas atividades e ensaios realizados conclui-se que:
- Após o processo de laminação a frio, a porcentagem crescente de encruamento aumenta proporcionalmente a dureza do material e, após tratamento térmico de recristalização, a dureza diminui.
- Após o tratamento térmico da liga Cu–Zn–Al temse a presença dos constituintes α e martensita bem distintos:
- A dureza do material está relacionada com a quantidade dos constituintes presentes;
- Quanto maior a quantidade de martensita, maior a dureza e menor a trabalhabilidade do material;

Referências

TSUCHIYA K. And HARRISON, J.D., The Origins of the Shape Memory Effect, JOM, pp.26-28, 1989.

Agradecimentos

Ao Centro Universitário da FEI pela concessão da bolsa de iniciação científica.

Aos professores Dr. Francisco Ambrozio Filho e Ms. Jorge Kolososki, pela orientação e paciência no decorrer do desenvolvimento deste trabalho;